Approximation of certain multivariate integrals

نویسندگان

  • Jane M. Olson
  • Lisa A. Weissfeld
چکیده

A Taylor series approximation to multivariate integrals taken with respect to a multivariate probability distribution is proposed and applied to the computation of multivariate normal probabilities and conditional expectations. The approximation does not require that the multivariate distribution have a structured covariance matrix and, in its simplest form, can be written as the product of univariate integrals. The approximation is compared to that of Mendell and Elston (1974) for computing bivariate normal probabilities. Keywordr: Multivariate normal probabilities, Taylor series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series expansion of Wiener integrals via block pulse functions

In this paper, a suitable numerical method based on block pulse functions is introduced to approximate the Wiener integrals which the exact solution of them is not exist or it may be so hard to find their exact solutions. Furthermore, the error analysis of this method is given. Some numerical examples are provided which show that the approximation method has a good degree of accuracy. The main ...

متن کامل

Multivariate exponential integral approximations: a moment approach

We propose a method to approximate a class of exponential multivariate integrals using moment relaxations. Using this approach, both lower and upper bounds of the integrals are obtained and we show that these bound values asymptotically converge to the real value of the integrals when the moment degree r increases. We further demonstrate the method by calculating both hypercubic and order stati...

متن کامل

Multivariate Integral Perturbation Techniques - I (Theory)

We present a quasi-analytic perturbation expansion for multivariate N dimensional Gaussian integrals. The perturbation expansion is an infinite series of lower-dimensional integrals (one-dimensional in the simplest approximation). This perturbative idea can also be applied to multivariate Student-t integrals. We evaluate the perturbation expansion explicitly through 2 order, and discuss the con...

متن کامل

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001